

Contents

	CompChemUtils
	Requirements

	Installation

	Documentation

	Testing

	Examples

	Enable Shell Completion

	Installation

	Usage

	Reference
	ccu package

	ccu.adsorption package

	ccu.cli package

	ccu.structure package

	ccu

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.0.1 (2023-06-22)

Indices and tables

	Index

	Module Index

	Search Page

CompChemUtils

CompChemUtils is a set of tools for computational catalysis workflows.

Requirements

	Python [https://www.python.org] 3.10 or later

	Click [https://click.palletsprojects.com/en/8.1.x/] (package for command line interfaces)

	NumPy [https://numpy.org] (N-dimensional array package)

	SciPy [https://scipy.org] (library for scientific computing)

	ASE [https://wiki.fysik.dtu.dk/ase/index.html] (tools for atomistic simulations)

Installation

$ pip install comp-chem-utils

or, if you use poetry:

$ poetry add comp-chem-utils

You can also install the in-development version with:

$ pip install https://gitlab.com/ugognw/python-comp-chem-utils/-/archive/development/ccu-main.zip

or, similarly:

$ poetry add git+https://gitlab.com/ugognw/python-comp-chem-utils/-/archive/development/ccu-main.git

Documentation

https://python-comp-chem-utils.readthedocs.io/en/latest

Testing

To run all the tests run:

$ tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Examples

Determine whether a water molecule is symmetric with respect to a 180 degree rotation about its secondary orientation axis.

>>> from ase.build import molecule
>>> from ccu.structure.axisfinder import find_secondary_axis
>>> from ccu.structure.symmetry import Rotation, RotationSymmetry
>>> h2o = molecule('H2O')
>>> axis = find_secondary_axis(h2o)
>>> r = Rotation(180, axis)
>>> sym = RotationSymmetry(r)
>>> sym.check_symmetry(h2o)
True

Retrieve reaction intermediates for the two-electron CO2 reduction reaction.

>>> from ccu.adsorption.adsorbates import get_adsorbate
>>> cooh = get_adsorbate('COOH_CIS')
>>> cooh.positions
array([[0. , 0. , 0.],
 [0.98582255, -0.68771934, 0.],
 [0. , 1.343 , 0.],
 [0.93293074, 1.61580804, 0.]])
>>> ocho = get_adsorbate('OCHO')
>>> ocho.positions
array([[0. , 0. , 0.],
 [1.16307212, -0.6715 , 0.],
 [0. , 1.343 , 0.],
 [-0.95002987, -0.5485 , 0.]])

Place adsorbates on a surface (namely, “Cu-THQ.traj”) while considering the symmetry of the adsorbate and the adsorption sites.:

$ ccu adsorption place-adsorbate CO Cu-THQ.traj orientations/

Enable Shell Completion

Add this to your ~/.bashrc::

eval "$(_CCU_COMPLETE=bash_source ccu)"

Add this to ~/.zshrc::

eval "$(_CCU_COMPLETE=zsh_source ccu)"

Add this to ~/.config/fish/completions/ccu.fish::

eval (env _CCU_COMPLETE=fish_source ccu)

Installation

At the command line:

poetry add comp-chem-utils

OR

pip install comp-chem-utils

Usage

To use ccu in a project:

import ccu

Reference

	ccu package
	Subpackages
	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module
	AdsorbateComplex
	AdsorbateComplex.write()

	AdsorbateComplexFactory
	AdsorbateComplexFactory.adsorbate

	AdsorbateComplexFactory.adsorbate_orientations()

	AdsorbateComplexFactory.next_complex()

	AdsorbateComplexFactory.orient_adsorbate()

	AdsorbateComplexFactory.place_adsorbate()

	AdsorbateComplexFactory.structure

	run()

	ccu.adsorption.adsorbateorientation module
	AdsorbateOrientation

	AdsorbateOrientationFactory
	AdsorbateOrientationFactory.create_orientations()

	ccu.adsorption.adsorbates module
	get_adsorbate()

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module
	AdsorptionSite

	MOFSite
	MOFSite.create_alignments()

	MOFSite.create_intermediate_alignments()

	MOFSiteFinder
	MOFSiteFinder.adjacent_linkers

	MOFSiteFinder.create_between_linker_site()

	MOFSiteFinder.create_linker_sites()

	MOFSiteFinder.create_metal_site()

	MOFSiteFinder.sbu_metal

	MOFSiteFinder.sites()

	MOFSiteFinder.surface_norm

	SiteAlignment

	SiteFinder
	SiteFinder.sites()

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module
	add_subcommands()

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module
	find_farthest_atoms()

	find_primary_axis()

	find_secondary_axis()

	find_tertiary_axis()

	get_axes()

	ccu.structure.cli module

	ccu.structure.comparator module
	Comparator
	Comparator.calculate_cumulative_displacement()

	Comparator.check_similarity()

	Comparator.cosort_fingerprints()

	Comparator.cosort_histograms()

	ccu.structure.fingerprint module
	Fingerprint
	Fingerprint.from_structure()

	ccu.structure.geometry module
	calculate_separation()

	ccu.structure.resizecell module
	run()

	ccu.structure.symmetry module
	Inversion

	Rotation
	Rotation.as_matrix()

	Rotation.transform()

	RotationSymmetry
	RotationSymmetry.check_symmetry()

	RotationSymmetry.operation

	Symmetry
	Symmetry.check_symmetry()

	Symmetry.operation

	SymmetryOperation
	SymmetryOperation.transform()

	Module contents

	Module contents

	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module
	AdsorbateComplex
	AdsorbateComplex.write()

	AdsorbateComplexFactory
	AdsorbateComplexFactory.adsorbate

	AdsorbateComplexFactory.adsorbate_orientations()

	AdsorbateComplexFactory.next_complex()

	AdsorbateComplexFactory.orient_adsorbate()

	AdsorbateComplexFactory.place_adsorbate()

	AdsorbateComplexFactory.structure

	run()

	ccu.adsorption.adsorbateorientation module
	AdsorbateOrientation

	AdsorbateOrientationFactory
	AdsorbateOrientationFactory.create_orientations()

	ccu.adsorption.adsorbates module
	get_adsorbate()

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module
	AdsorptionSite

	MOFSite
	MOFSite.create_alignments()

	MOFSite.create_intermediate_alignments()

	MOFSiteFinder
	MOFSiteFinder.adjacent_linkers

	MOFSiteFinder.create_between_linker_site()

	MOFSiteFinder.create_linker_sites()

	MOFSiteFinder.create_metal_site()

	MOFSiteFinder.sbu_metal

	MOFSiteFinder.sites()

	MOFSiteFinder.surface_norm

	SiteAlignment

	SiteFinder
	SiteFinder.sites()

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module
	add_subcommands()

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module
	find_farthest_atoms()

	find_primary_axis()

	find_secondary_axis()

	find_tertiary_axis()

	get_axes()

	ccu.structure.cli module

	ccu.structure.comparator module
	Comparator
	Comparator.calculate_cumulative_displacement()

	Comparator.check_similarity()

	Comparator.cosort_fingerprints()

	Comparator.cosort_histograms()

	ccu.structure.fingerprint module
	Fingerprint
	Fingerprint.from_structure()

	ccu.structure.geometry module
	calculate_separation()

	ccu.structure.resizecell module
	run()

	ccu.structure.symmetry module
	Inversion

	Rotation
	Rotation.as_matrix()

	Rotation.transform()

	RotationSymmetry
	RotationSymmetry.check_symmetry()

	RotationSymmetry.operation

	Symmetry
	Symmetry.check_symmetry()

	Symmetry.operation

	SymmetryOperation
	SymmetryOperation.transform()

	Module contents

	ccu
	ccu package
	Subpackages
	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module
	AdsorbateComplex
	AdsorbateComplex.write()

	AdsorbateComplexFactory
	AdsorbateComplexFactory.adsorbate

	AdsorbateComplexFactory.adsorbate_orientations()

	AdsorbateComplexFactory.next_complex()

	AdsorbateComplexFactory.orient_adsorbate()

	AdsorbateComplexFactory.place_adsorbate()

	AdsorbateComplexFactory.structure

	run()

	ccu.adsorption.adsorbateorientation module
	AdsorbateOrientation

	AdsorbateOrientationFactory
	AdsorbateOrientationFactory.create_orientations()

	ccu.adsorption.adsorbates module
	get_adsorbate()

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module
	AdsorptionSite

	MOFSite
	MOFSite.create_alignments()

	MOFSite.create_intermediate_alignments()

	MOFSiteFinder
	MOFSiteFinder.adjacent_linkers

	MOFSiteFinder.create_between_linker_site()

	MOFSiteFinder.create_linker_sites()

	MOFSiteFinder.create_metal_site()

	MOFSiteFinder.sbu_metal

	MOFSiteFinder.sites()

	MOFSiteFinder.surface_norm

	SiteAlignment

	SiteFinder
	SiteFinder.sites()

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module
	add_subcommands()

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module
	find_farthest_atoms()

	find_primary_axis()

	find_secondary_axis()

	find_tertiary_axis()

	get_axes()

	ccu.structure.cli module

	ccu.structure.comparator module
	Comparator
	Comparator.calculate_cumulative_displacement()

	Comparator.check_similarity()

	Comparator.cosort_fingerprints()

	Comparator.cosort_histograms()

	ccu.structure.fingerprint module
	Fingerprint
	Fingerprint.from_structure()

	ccu.structure.geometry module
	calculate_separation()

	ccu.structure.resizecell module
	run()

	ccu.structure.symmetry module
	Inversion

	Rotation
	Rotation.as_matrix()

	Rotation.transform()

	RotationSymmetry
	RotationSymmetry.check_symmetry()

	RotationSymmetry.operation

	Symmetry
	Symmetry.check_symmetry()

	Symmetry.operation

	SymmetryOperation
	SymmetryOperation.transform()

	Module contents

	Module contents

ccu package

Subpackages

	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module
	AdsorbateComplex
	AdsorbateComplex.write()

	AdsorbateComplexFactory
	AdsorbateComplexFactory.adsorbate

	AdsorbateComplexFactory.adsorbate_orientations()

	AdsorbateComplexFactory.next_complex()

	AdsorbateComplexFactory.orient_adsorbate()

	AdsorbateComplexFactory.place_adsorbate()

	AdsorbateComplexFactory.structure

	run()

	ccu.adsorption.adsorbateorientation module
	AdsorbateOrientation

	AdsorbateOrientationFactory
	AdsorbateOrientationFactory.create_orientations()

	ccu.adsorption.adsorbates module
	get_adsorbate()

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module
	AdsorptionSite

	MOFSite
	MOFSite.create_alignments()

	MOFSite.create_intermediate_alignments()

	MOFSiteFinder
	MOFSiteFinder.adjacent_linkers

	MOFSiteFinder.create_between_linker_site()

	MOFSiteFinder.create_linker_sites()

	MOFSiteFinder.create_metal_site()

	MOFSiteFinder.sbu_metal

	MOFSiteFinder.sites()

	MOFSiteFinder.surface_norm

	SiteAlignment

	SiteFinder
	SiteFinder.sites()

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module
	add_subcommands()

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module
	find_farthest_atoms()

	find_primary_axis()

	find_secondary_axis()

	find_tertiary_axis()

	get_axes()

	ccu.structure.cli module

	ccu.structure.comparator module
	Comparator
	Comparator.calculate_cumulative_displacement()

	Comparator.check_similarity()

	Comparator.cosort_fingerprints()

	Comparator.cosort_histograms()

	ccu.structure.fingerprint module
	Fingerprint
	Fingerprint.from_structure()

	ccu.structure.geometry module
	calculate_separation()

	ccu.structure.resizecell module
	run()

	ccu.structure.symmetry module
	Inversion

	Rotation
	Rotation.as_matrix()

	Rotation.transform()

	RotationSymmetry
	RotationSymmetry.check_symmetry()

	RotationSymmetry.operation

	Symmetry
	Symmetry.check_symmetry()

	Symmetry.operation

	SymmetryOperation
	SymmetryOperation.transform()

	Module contents

Module contents

Utilities for computational catalysis.

ccu.adsorption package

Submodules

ccu.adsorption.adsorbatecomplex module

Defines the AdsorbateComplex and AdsorbateComplexFactory classes.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplex(site_description: str, orientation_description: str, structure_desription: str, structure: Atoms)

	Bases: object

An adsorbate-surface complex.

	Variables:

	
	structure_description – A string describing the surface structure.

	site_description – A string describing the adsorption site.

	orientation_description – A string describing the orientation of the
adsorbate.

	structure – An ase.Atoms object of the adsorbate-surface complex.

	
write(destination: Path = None) → Path

	Writes the AdsorbateComplex object to an ASE .traj file.

	Parameters:

	destination – A pathlib.Path instance indicating the directory in
which to write the .traj file. Defaults to the current working
directory.

	Returns:

	A pathlib.Path instance indicating the path of the written .traj
file.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory(adsorbate: Atoms, structure: Atoms, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateComplex factory.

Given an adsorbate, a structure, and various configuration specifications
(e.g., “symmetric”, “vertical”), an AdsorbateComplexFactory determines all
of the adsorption sites and corresponding adsorbate configurations.

	Variables:

	
	_adsorbate – An ase.Atoms instance representing the adsorbate.

	_structure – An ase.Atoms instance representing the surface structure.

	separation – How far (in Angstroms) the adsorbate should be placed from
the surface.

	special_centres – A boolean indicating whether or not atom-centred
placement will be used.

Note that in addition to be set to true, the ase.Atoms instance
passed as the adsorbate argument must have the key ‘special
centres’ in its info attribute. Further, this key must map to an
iterable whose elements specify the indices of the atoms to be used
to centre the adsorbate. If this key is not present in the info
attribute, then the atom with index 0 will be used to centre the
adsorbate.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric.

	vertical – A boolean indicating whether or not to consider vertical
adsorption sites.

	
property adsorbate: Atoms

	

	
adsorbate_orientations(site: AdsorptionSite) → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Returns a list of all adsorbate orientations for a given
adsorption site.

	Parameters:

	site – A sitefinder.AdsorptionSite instance representing the site
for which to generate adsorbate orientations.

	
next_complex(site: AdsorptionSite, adsorbate_tag: int = -99) → Iterator[AdsorbateComplex]

	Yields next adsorbate-surface complex for a given site as an
AdsorbateComplex.

	Parameters:

	
	site – A sitefinder.AdsorptionSite instance which represents the
site for which to generate complexes.

	adsorbate_tag – An integer with which to tag the adsorbate to
enable tracking. Defaults to -99.

	
orient_adsorbate(orientation: AdsorbateOrientation) → Atoms

	Orients the AdsorbateComplexFactory’s adsorbate such that its
primary axis is aligned with the primary orientation vector of the
given AdsorbateOrientation object and its secondary axis is in the
plane defined by the primary axis of the adsorbate and the secondary
orientation.

	Parameters:

	orientation – An adsorbateorientation.AdsorbateOrientation instance
representing the orientation in which the adsorbate is to be
directed.

	Returns:

	An ase.Atoms instance representing the oriented adsorbate as a
copy of the AdsorbateComplexFactory’s adsorbate.

	
place_adsorbate(adsorbate: Atoms, site: AdsorptionSite, centre: array = None)

	Moves adsorbate to specified site respecting the minimum specified
separation.

	Parameters:

	
	new_adsorbate – An ase.Atoms instance representing theadsorbate to
be moved.

	centre – A numpy.array designating the centre with which to align
the adsorbate.

	site – A sitefinder.AdsorptionSite instance representing the site
on which the adsorbate is to be placed.

	
property structure: Atoms

	

	
ccu.adsorption.adsorbatecomplex.run(adsorbate: str, structure: Path, destination: Path = None, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Creates MOF-adsorbate complexes for adsorption configurations on the
SBU of the given MOF and write them to a .traj file.

	Parameters:

	
	adsorbate – A string indicating the name of the adsorbate to place on
the surface.

	structure – A pathlib.Path instance indicating the path to the surface
on which the adsorbate will be placed.

	destination – A pathlib.Path instance indicating the directory in which
to write the .traj files. The directory is created if it does not
exist. Defaults to the current working directory.

	separation – A float indicating how far (in Angstroms) the adsorbate
should be placed from the surface. Defaults to 1.8.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric. Defaults to False.

	vertical – A boolean indicating whether or not vertical adsorption
configurations are to be generated. Defaults to False.

ccu.adsorption.adsorbateorientation module

This module defines the AdsorbateOrientation and AdsorbateOrientationFactory
classes.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientation(description: str, orientation_vectors: Sequence[array])

	Bases: object

An orientation of an adsorbate.

An AdsorbateOrientation object contains the information required to
unambiguously orient an adsorbate in space.

	Variables:

	
	description – A string describing the adsorbate orientation.

	vectors – A tuple of numpy.array instances which are the vectors along
which an adsorbate will be oriented. The sequence should contain
two linearly independent unit vectors. The first vector is the
primary orientation axis. The secondary vector is secondary
orientation axis.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientationFactory(site: AdsorptionSite, adsorbate: Atoms, force_symmetry: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateOrientation factory.

An AdsorbateOrientationFactory creates a collection of
AdsorbateOrientation objects for a given AdsorptionSite subject to
symmetry and orientation specifications.

	Variables:

	
	site – A sitefinder.AdsorptionSite instance indicating site for which
the orientations are to be created.

	adsorbate – An ase.Atoms instance representing the adsorbate which will
assume the orientations.

	force_symmetry – A boolean indicating whether or not to force the
adsorbate to be treated as symmetric.

	vertical – A boolean indicating whether or not vertical orientations
will be created.

	
create_orientations() → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Creates a list of AdsorbateOrientation objects.

	Returns:

	A list of AdsorbateOrientation objects.

ccu.adsorption.adsorbates module

This module defines CO2RR, NRR/UOR, OER/ORR, and HER intermediates.

CO2RR Intermediates from Chem. Rev. 2019, 119, 12, 7610-7672.

NRR/UOR Intermediates from ACS Catal. 2023, 13, 3, 1926-1933. and
Angew. Chem. Int. Ed. 2021, 60, 51, 26656.

Bond lengths, angles and positions from cccbdb.nist.gov.

Usage:

>>> from ccu.adsorption.adsorbates import get_adsorbate
>>> get_adsorbate('CO2')
Atoms(symbols='CO2', pbc=False)

	
ccu.adsorption.adsorbates.get_adsorbate(adsorbate: str) → Atoms

	Returns the requested adsorbate as an ase.Atoms object.

	Parameters:

	adsorbate – The name of the adsorbate to retrieve as a string
(case-insensitive).

	Raises:

	NotImplementedError – The requested adsorbate is neither a molecule
 supported by ASE nor a defined adsorbate in ccu.adsorption.
 adsorbates.

	Returns:

	An ase.Atoms instance representing the requested adsorbate.

ccu.adsorption.cli module

This module contains the ccu.structure package CLI logic.

ccu.adsorption.sitefinder module

Defines the AdsorptionSite, SiteFinder, and MOFSiteFinder classes.

	
class ccu.adsorption.sitefinder.AdsorptionSite(location: Sequence[float], description: str, alignments: Iterable[SiteAlignment], surface_norm: Sequence[float])

	Bases: object

An adsorption site for an adsorbate.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the unit normal vector for

	site. (the surface hosting the adsorption) –

	
class ccu.adsorption.sitefinder.MOFSite(location: Sequence[float], description: str, alignment_atoms: Iterable[Atom], site_anchor: Sequence[float], surface_norm: Sequence[float], intermediate_alignments: bool = False)

	Bases: AdsorptionSite

An adsorption site within a MOF.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the normal vector for the
surface hosting the adsorption site.

	intermediate_alignments – A boolean indicating whether or not to
consider intermediate alignments.

	
create_alignments(alignment_atoms: Iterable[Atom], site_anchor: Sequence[float]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	Creates the SiteAlignment objects for a MOFSite.

	Parameters:

	
	alignment_atoms – An iterable containing ase.Atom instances which
will be used to define alignment directions.

	site_anchor – A sequence of floats representing a reference location
using for defining alignment directions. This is usually the
position of the metal atom in the site.

	Returns:

	A list of SiteAlignment instances representing the alignments for a
MOFSite instance.

	
create_intermediate_alignments(colinear_vectors: Iterable[SiteAlignment]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	

	
class ccu.adsorption.sitefinder.MOFSiteFinder(structure: Atoms)

	Bases: SiteFinder

A SiteFinder subclass which finds adsorption sites on MOF surfaces.

Currently, the atoms bonded to the metal within the SBU must possess tags
of 1 and the metal must possess a tag of 2 for the implementation to work
correctly.

	Parameters:

	structure – An ase.Atoms object representing a metal-organic framework.

	
property adjacent_linkers: list[ase.atom.Atom]

	A list of ase.Atom instances representing two adjacent linker
atoms.

	
create_between_linker_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
between the MOF linker atoms.

	
create_linker_sites() → list[ccu.adsorption.sitefinder.MOFSite]

	Returns a list of MOFSite instances representing adsorption sites
centred on the MOF linker atoms.

	
create_metal_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
on the MOF metal atom.

	
property sbu_metal: Atom

	An ase.Atom instance representing the metal atom within the SBU of
the MOF.

	
sites() → list[ccu.adsorption.sitefinder.AdsorptionSite]

	Determines all unique SBU adsorption sites for a given MOF.

Note that the AdsorptionSites are defined such that the first and
second elements in their “alignment_atoms” attribute are linker atoms
and the third element is the metal.

	Returns:

	A list of AdsorptionSite instances representing the SBU adsorption
sites of the given MOF.

	
property surface_norm: array

	A unit vector normal to the plane determined by two adjacent linker
atoms and the metal within the SBU.

	
class ccu.adsorption.sitefinder.SiteAlignment(alignment_vector: Sequence[float], description: str)

	Bases: object

An alignment that an adsorbate can assume on a site.

	Variables:

	
	vector – A numpy.array representing the alignment vector as a unit
vector.

	description – A string describing the site alignment.

	
class ccu.adsorption.sitefinder.SiteFinder

	Bases: ABC

An abstract base class for objects which find adsorption sites
for particular surfaces.

Subclasses must define the abstract method “sites” which returns all
adsorption sites for a given structure.

	
abstract sites() → Iterable[AdsorptionSite]

	Subclasses should override this method.

Module contents

ccu.cli package

Submodules

ccu.cli.main module

Module that contains the command line app.

Why does this file exist, and why not put this in __main__?

You might be tempted to import things from __main__ later, but that will
cause problems: the code will get executed twice:

	When you run python -m ccu python will execute
__main__.py as a script. That means there won’t be any
ccu.__main__ in sys.modules.

	When you import __main__ it will get executed again (as a module) because
there’s no ccu.__main__ in sys.modules.

Also see (1) from https://click.palletsprojects.com/en/5.x/setuptools/
#setuptools-integration

	
ccu.cli.main.add_subcommands()

	

Module contents

ccu.structure package

Submodules

ccu.structure.axisfinder module

This module defines functions to determine a molecule’s orientation axes.

The function get_axes returns all three orientation axes for a given molecule.
For example,

>>> import ase
>>> from ccu.structure.axisfinder import get_axes
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> get_axes(coh)
(array([1., 0., 0.]), array([0., 1., 0.]), array([0., 0., 1.]))

The function find_farthest_atoms returns the two atoms within a molecule whose
separation is the greatest. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_farthest_atoms
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_farthest_atoms(coh)
(Atom('C', [0.0, 0.0, 0.0], index=0), Atom('O', [-2.0, 0.0, 0.0], index=1))

The function find_primary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_primary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_primary_axis(coh)
array([1., 0., 0.])

The function find_secondary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_secondary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_secondary_axis(coh)
array([0., 1., 0.])

The function find_tertiary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_tertiary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_tertiary_axis(coh)
array([0., 0., 1.])

	
ccu.structure.axisfinder.find_farthest_atoms(molecule: Atoms, tol: float = 1e-05) → tuple[ase.atoms.Atoms]

	Finds the two atoms in the molecule separated by the greatest distance.

In molecules for which there are several pairs of atoms with equidistant
separations, this function will return the pair of atoms with lowest
indices whose separation is within a given tolerance of the largest
atomic separation in the molecule. Each pair is sorted according to the
index of the lowest index atom and then the index of the second atom. For
.. rubric:: Example

	If atoms 0 and 1 have the same separation as atoms 2 and 3, atoms
0 and 1 will be returned since 0 < 2.

	If atoms 0 and 1 have the same separation as atoms 0 and 3, atoms
0 and 1 will be returned since 1 < 3.

	If atoms 1 and 2 have the same separation as atoms 0 and 4, atoms
0 and 4 will be returned since 0 < 1.

	If atoms 1 and 2 have the same separation as atoms 0 and 2, atoms
0 and 2 will be returned since 0 < 1.

	Parameters:

	
	molecule – The molecule for whom the two farthest atoms are to be
determined.

	tol – A float indicating the resolution (in Angstroms) between atomic
distances.

	Returns:

	A tuple containing the two atoms in the molecule separated by the
greatest distance. The atoms are ordered by lowest index within the
structure.

	
ccu.structure.axisfinder.find_primary_axis(molecule: Atoms) → array

	Determines the unit vector representing the primary orientation axis of
a molecule.

The primary axis is defined as the unit vector which is parallel to the
direction vector between the two most distant atoms in the molecule and
points from the higher index atom to the lower index atom.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
primary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
primary orientation axis. Note that for zero-dimensional molecules,
this function will return the zero vector.

	
ccu.structure.axisfinder.find_secondary_axis(molecule: Atoms, min_distance: float = 0.1) → array

	Determines the unit vector representing the secondary orientation axis
of a molecule.

Let L be the line between the two farthest atoms in the molecule, let v be
the vector which defines the primary axis, and let P be the position of
the atom farthest from L. Further, let w be the vector from L to P, and
let z be the component of w which is orthogonal to v. The secondary axis
is defined as the unit vector in the direction of z.

	Parameters:

	
	molecule – An ase.Atoms instance representing the molecule for whom the
secondary axis is to be determined.

	min_distance – A float specifying the minimum distance from the primary
axis (in Angstroms) to be considered for defining the secondary
axis. Defaults to 0.1.

	Returns:

	A numpy.array representing a unit vector in the direction of the
secondary orientation axis. Note that for zero- and one-dimensional
molecules, this function will return the zero vector.

	
ccu.structure.axisfinder.find_tertiary_axis(molecule: Atoms) → array

	Determines the unit vector representing the tertiary orientation axis
of a molecule.

The tertiary orientation axis is simply the cross product of the primary
and secondary orientation axes. See find_primary_axis and
find_secondary_axis for information on how these axes are defined.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
tertiary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
tertiary orientation axis. Note that if the molecule is zero- or
one-dimensional, this function will return the zero vector.

	
ccu.structure.axisfinder.get_axes(molecule: Atoms) → tuple[numpy.array]

	Determines a molecule’s three orientation axes.

The primary axis is defined as the vector between the two most distant
atoms. The secondary axis is defined as the orthogonal component (to the
primary axis) of the vector from the primary axis to the atom farthest
from the line between the two most distant atoms. The tertiary axis is the
cross product of the primary and secondary axes. The axes so defined are
orthogonal. Note that if the molecule is unimolecular, all three vectors
will be the zero vector, and that if the molecule is linear only the
primary axis will be nonzero.

	Parameters:

	molecule – An ase.Atoms instance whose axes are to be determined.

	Returns:

	A tuple containing unit vectors reprsenting the three orientation
axes. The first, second, and third entries are the primary, secondary,
and tertiary axes, respectively. For nonlinear molecules, the axes
form an orthonormal set.

ccu.structure.cli module

This module contains the ccu.structure package CLI logic.

ccu.structure.comparator module

This module defines the Comparator class.

The Comparator class can be used to determine teh similarity of two structures
as follows:

>>> import ase
>>> from ccu.structure.comparator import Comparator
>>> co1 = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> co2 = ase.Atoms('CO', positions=[[0, 1, 1], [1, 1, 1]])
>>> oc = ase.Atoms('OC', positions=[[0, 0, 0], [1, 0, 0]])
>>> Comparator.check_similarity(co1, co2)
True
>>> Comparator.check_similarity(co1, oc)
False

	
class ccu.structure.comparator.Comparator

	Bases: object

An object which compares the similarity of two structures.

	
static calculate_cumulative_displacement(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → float

	Calculates the cumulative displacement of each atomic position in
fingerprint2 relative to the corresponding atomic position in
fingerprint1.

The cumulative displacement is defined as follows:

Note that each row in each np.ndarray associated with each histogram
key corresponds to a displacement vector between two atoms. With each
such displacement vector in the histogram of fingerprint1, we can
identify a corresponding displacement vector in the histogram of
fingerprint2 as the displacement vector associated with the same
histogram key and index. We then define a difference vector as the
difference between a displacement vector in fingerprint1 and its
counterpart in fingerprint2. The set of all difference vectors is
defined on the basis of fingerprint1. That is, if X is the set of all
displacement vectors in fingerprint1 and Y is the set of all
corresponding vectors in fingerprint2, the set of all difference
vectors is the set of all vectors x - y where x is a displacement
vector in fingerprint1 and y is the corresponding displacement vector
in Y. (Note that this requires that the histogram of fingerprint2 must
include all the keys that that of the histogram of fingerprint1
includes. Additionally, this requires that for each key in the
histogram of fingerprint1, the value in fingerprint2 includes at least
as many displacement vectors as the value in fingerprint1.) The
cumulative displacement is then defined as the sum of the norms of all
the difference vectors corresponding to fingerprint1 and fingerprint2.

	Parameters:

	
	fingerprint1 – The Fingerprint instance used as a reference to
calculate the cumulative displacement.

	fingerprint2 – The second Fingerprint instance used to calculate the
cumulative displacement.

	Returns:

	A float representing the cumulative displacement for fingerprint2
relative to fingerprint1.

	
static check_similarity(structure1: Atoms, structure2: Atoms, tol: float = 0.05) → bool

	Determines whether the atomic positions of two structures are
similar to within a given tolerance.

	Parameters:

	
	structure1 – An ase.Atoms instance representing the first structure
to compare.

	structure2 – An ase.Atoms instance representing the second structure
to compare.

	tol – A float specifying the tolerance for the cumulative
displacement for fingerprint in Angstroms. Defaults to 5e-2.

	Returns:

	A boolean indicating whether or not the two structures are similar
within the specified tolerance. Two structures are similar if they
can be superimposed via a translation operation.

	
static cosort_fingerprints(fingerprints1: Iterable[Fingerprint], fingerprints2: Iterable[Fingerprint]) → tuple[ccu.structure.fingerprint.Fingerprint]

	Determines the ordering of the second supplied iterable of
Fingerprints which minimizes the cumulative displacement across the two
iterables of Fingerprints.

	Parameters:

	
	fingerprints1 – An iterable containing Fingerprint instances.

	fingerprints2 – An iterable containing Fingerprint instances.

	Note that the two iterables must be of the same length and that the

	values() methods of all Fingerprint instances across the two

	iterables must be of the same length.

	Returns:

	A tuple containing the ordering of fingerprints2 which minimizes
the cumulative displacement across the two iterables of
Fingerprints.

	
static cosort_histograms(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → dict[str, numpy.ndarray]

	Determines the ordering of the second fingerprint’s histogram which
minimizes the cumulative displacement of the atoms in each structure.

The two supplied Fingerprints need not have the same keys or the same
number of entries under each key. Such cases are handled as follows:

Let k be a key in both the histograms of fingerprint1 and fingerprint2.
Let p be the iterable corresponding to the key k in the histogram of
fingerprint1, and let q be the iterable corresponding to the key k in
the histogram of fingerprint2.

If len(p) > len(q), then q is ordered according to its match with the
first len(q) elements of p.

If len(p) <= len(q), then q is ordered according to the best match with
p and the first len(p) elements of q.

	Parameters:

	
	fingerprint1 – The Fingerprint object to be used as a reference for
each displacement in the other Fingerprint’s histogram.

	fingerprint2 – The Fingerprint object for which the optimally
ordered histogram is to be determined.

	Returns:

	A dict constructed from fingerprint2._histogram mapping chemical
symbols to a numpy.ndarray containing the displacement vectors to
atoms with the corresponding chemical symbol. The order of the
displacement vectors is such that the cumulative displacement of
the displacement vectors is minimized relative to
fingerprint1._histogram.

ccu.structure.fingerprint module

This module defines the Fingerprint class.

	
class ccu.structure.fingerprint.Fingerprint(structure: Atoms, reference: int, indices: Iterable[int] = None)

	Bases: MutableMapping

A set of displacement vectors relative to a particular atom within an
ase.Atoms object.

The displacement vectors for atoms of a given chemical symbol can be
accessed through the MutableMapping interface. For example:

structure = ase.Atoms(‘CO’, positions=[[0, 0, 0], [1, 0, 0]])
fp = Fingerprint(structure, 0, [0, 1])
fp[‘C’]

	Variables:

	
	structure – The ase.Atoms instance to which the Fingerprint instance is
related. reference: An int indicating the index of the reference
atom used to construct the Fingerprint instance.

	indices – A tuple indicating the indices of the atoms within the
structure used to construct the Fingerprint instance.

	
classmethod from_structure(structure: Atoms) → list[ccu.structure.fingerprint.Fingerprint]

	Creates a list of Fingerprint objects corresponding to each atom
within an ase.Atoms object.

	Parameters:

	structure – An ase.Atoms instance representing the structure from
which to create the list of Fingerprints.

	Returns:

	A list of the Fingerprints for each atom.

ccu.structure.geometry module

This module defines useful geometry related functions for ase.Atoms
instances.

	
ccu.structure.geometry.calculate_separation(structure1: Atoms, structure2: Atoms) → float

	Calculates the separation between two ase.Atoms instances defined as
the smallest distance between an atom in one structure and an atom in the
second structure.

	Parameters:

	
	structure1 – An ase.Atoms instance.

	structure2 – An ase.Atoms instance.

	Returns:

	A float representing the separation between the two structures.

ccu.structure.resizecell module

This script resizes the c vector of all the .traj files in the current
working directory to the specified positive number (default is 10)

	
ccu.structure.resizecell.run(structure: Path, length: float)

	Resize c-vector of structure and centres atoms in cell.

	Parameters:

	
	structure – A pathlib.Path instance leading to the structure whose cell
is to be resized.

	length – A float specifying the new c-vector of the cell.

ccu.structure.symmetry module

This class defines the SymmetryOperation and Symmetry classes and
subclasses.

Symmetry and SymmetryOperation subclasses can be used as follows:

>>> import ase
>>> from ccu.structure.symmetry import Rotation, RotationSymmetry
>>> rotation1 = Rotation(90, [0, 0, 1])
>>> symmetry1 = RotationSymmetry(rotation1)
>>> co = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotated = rotation1.transform(co)
>>> rotated.positions
array([[0.000000e+00, 0.000000e+00, 0.000000e+00],
 [6.123234e-17, 1.000000e+00, 0.000000e+00]])
>>> symmetry1.check_symmetry(co)
False
>>> h2 = ase.Atoms('HH', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotation2 = Rotation(180, [0, 0, 1])
>>> symmetry2 = RotationSymmetry(rotation2)
>>> symmetry2.check_symmetry(h2)
True

	
class ccu.structure.symmetry.Inversion

	Bases: SymmetryOperation

	
class ccu.structure.symmetry.Rotation(angle: float, axis: Iterable[float])

	Bases: SymmetryOperation

A rotation operation.

	Variables:

	
	angle – A float specifying a rotation angle in degrees.

	axis – A numpy.array representing the axis of rotation.

	
as_matrix() → ndarray

	Returns the rotation operation of this instance as a numpy.ndarray
which represents the rotation matrix.

	
transform(structure: Atoms) → Atoms

	Rotates the given structure by the angle and about the axis
specified as attributes of the Rotation object.

	Parameters:

	structure – An ase.Atoms instance representing structure to be
rotated.

	Returns:

	A rotated copy of the original ase.Atoms instance.

	
class ccu.structure.symmetry.RotationSymmetry(operation: Rotation)

	Bases: Symmetry

A rotational symmetry.

	
check_symmetry(structure: Atoms, tol: float = 0.05) → bool

	Determines the symmetry represented by the instance belongs to the
given structure.

	Parameters:

	
	structure – An ase.Atoms instance representing the structure whose
symmetry is to be determined.

	tol – A float specifying the absolute tolerance for positions.
Defaults to 5e-2.

	Returns:

	
	A boolean indicating whether or not the given structure possesses
	the symmetry of the RotationSymmetry object subject to the
specified tolerance.

	
property operation: Rotation

	The Rotation instance associated with this RotationSymmetry
instance.

	
class ccu.structure.symmetry.Symmetry

	Bases: ABC

An abstract base class for molecule symmetries.

	
abstract check_symmetry(structure: Atoms, tol: float) → bool

	Subclasses should override this method.

	
abstract property operation: SymmetryOperation

	Subclasses should override this method.

	
class ccu.structure.symmetry.SymmetryOperation

	Bases: ABC

An abstract base class for symmetry operations.

	
abstract transform(structure: Atoms) → Atoms

	Subclasses should override this method.

Module contents

ccu.adsorption package

Submodules

ccu.adsorption.adsorbatecomplex module

Defines the AdsorbateComplex and AdsorbateComplexFactory classes.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplex(site_description: str, orientation_description: str, structure_desription: str, structure: Atoms)

	Bases: object

An adsorbate-surface complex.

	Variables:

	
	structure_description – A string describing the surface structure.

	site_description – A string describing the adsorption site.

	orientation_description – A string describing the orientation of the
adsorbate.

	structure – An ase.Atoms object of the adsorbate-surface complex.

	
write(destination: Path = None) → Path

	Writes the AdsorbateComplex object to an ASE .traj file.

	Parameters:

	destination – A pathlib.Path instance indicating the directory in
which to write the .traj file. Defaults to the current working
directory.

	Returns:

	A pathlib.Path instance indicating the path of the written .traj
file.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory(adsorbate: Atoms, structure: Atoms, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateComplex factory.

Given an adsorbate, a structure, and various configuration specifications
(e.g., “symmetric”, “vertical”), an AdsorbateComplexFactory determines all
of the adsorption sites and corresponding adsorbate configurations.

	Variables:

	
	_adsorbate – An ase.Atoms instance representing the adsorbate.

	_structure – An ase.Atoms instance representing the surface structure.

	separation – How far (in Angstroms) the adsorbate should be placed from
the surface.

	special_centres – A boolean indicating whether or not atom-centred
placement will be used.

Note that in addition to be set to true, the ase.Atoms instance
passed as the adsorbate argument must have the key ‘special
centres’ in its info attribute. Further, this key must map to an
iterable whose elements specify the indices of the atoms to be used
to centre the adsorbate. If this key is not present in the info
attribute, then the atom with index 0 will be used to centre the
adsorbate.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric.

	vertical – A boolean indicating whether or not to consider vertical
adsorption sites.

	
property adsorbate: Atoms

	

	
adsorbate_orientations(site: AdsorptionSite) → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Returns a list of all adsorbate orientations for a given
adsorption site.

	Parameters:

	site – A sitefinder.AdsorptionSite instance representing the site
for which to generate adsorbate orientations.

	
next_complex(site: AdsorptionSite, adsorbate_tag: int = -99) → Iterator[AdsorbateComplex]

	Yields next adsorbate-surface complex for a given site as an
AdsorbateComplex.

	Parameters:

	
	site – A sitefinder.AdsorptionSite instance which represents the
site for which to generate complexes.

	adsorbate_tag – An integer with which to tag the adsorbate to
enable tracking. Defaults to -99.

	
orient_adsorbate(orientation: AdsorbateOrientation) → Atoms

	Orients the AdsorbateComplexFactory’s adsorbate such that its
primary axis is aligned with the primary orientation vector of the
given AdsorbateOrientation object and its secondary axis is in the
plane defined by the primary axis of the adsorbate and the secondary
orientation.

	Parameters:

	orientation – An adsorbateorientation.AdsorbateOrientation instance
representing the orientation in which the adsorbate is to be
directed.

	Returns:

	An ase.Atoms instance representing the oriented adsorbate as a
copy of the AdsorbateComplexFactory’s adsorbate.

	
place_adsorbate(adsorbate: Atoms, site: AdsorptionSite, centre: array = None)

	Moves adsorbate to specified site respecting the minimum specified
separation.

	Parameters:

	
	new_adsorbate – An ase.Atoms instance representing theadsorbate to
be moved.

	centre – A numpy.array designating the centre with which to align
the adsorbate.

	site – A sitefinder.AdsorptionSite instance representing the site
on which the adsorbate is to be placed.

	
property structure: Atoms

	

	
ccu.adsorption.adsorbatecomplex.run(adsorbate: str, structure: Path, destination: Path = None, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Creates MOF-adsorbate complexes for adsorption configurations on the
SBU of the given MOF and write them to a .traj file.

	Parameters:

	
	adsorbate – A string indicating the name of the adsorbate to place on
the surface.

	structure – A pathlib.Path instance indicating the path to the surface
on which the adsorbate will be placed.

	destination – A pathlib.Path instance indicating the directory in which
to write the .traj files. The directory is created if it does not
exist. Defaults to the current working directory.

	separation – A float indicating how far (in Angstroms) the adsorbate
should be placed from the surface. Defaults to 1.8.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric. Defaults to False.

	vertical – A boolean indicating whether or not vertical adsorption
configurations are to be generated. Defaults to False.

ccu.adsorption.adsorbateorientation module

This module defines the AdsorbateOrientation and AdsorbateOrientationFactory
classes.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientation(description: str, orientation_vectors: Sequence[array])

	Bases: object

An orientation of an adsorbate.

An AdsorbateOrientation object contains the information required to
unambiguously orient an adsorbate in space.

	Variables:

	
	description – A string describing the adsorbate orientation.

	vectors – A tuple of numpy.array instances which are the vectors along
which an adsorbate will be oriented. The sequence should contain
two linearly independent unit vectors. The first vector is the
primary orientation axis. The secondary vector is secondary
orientation axis.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientationFactory(site: AdsorptionSite, adsorbate: Atoms, force_symmetry: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateOrientation factory.

An AdsorbateOrientationFactory creates a collection of
AdsorbateOrientation objects for a given AdsorptionSite subject to
symmetry and orientation specifications.

	Variables:

	
	site – A sitefinder.AdsorptionSite instance indicating site for which
the orientations are to be created.

	adsorbate – An ase.Atoms instance representing the adsorbate which will
assume the orientations.

	force_symmetry – A boolean indicating whether or not to force the
adsorbate to be treated as symmetric.

	vertical – A boolean indicating whether or not vertical orientations
will be created.

	
create_orientations() → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Creates a list of AdsorbateOrientation objects.

	Returns:

	A list of AdsorbateOrientation objects.

ccu.adsorption.adsorbates module

This module defines CO2RR, NRR/UOR, OER/ORR, and HER intermediates.

CO2RR Intermediates from Chem. Rev. 2019, 119, 12, 7610-7672.

NRR/UOR Intermediates from ACS Catal. 2023, 13, 3, 1926-1933. and
Angew. Chem. Int. Ed. 2021, 60, 51, 26656.

Bond lengths, angles and positions from cccbdb.nist.gov.

Usage:

>>> from ccu.adsorption.adsorbates import get_adsorbate
>>> get_adsorbate('CO2')
Atoms(symbols='CO2', pbc=False)

	
ccu.adsorption.adsorbates.get_adsorbate(adsorbate: str) → Atoms

	Returns the requested adsorbate as an ase.Atoms object.

	Parameters:

	adsorbate – The name of the adsorbate to retrieve as a string
(case-insensitive).

	Raises:

	NotImplementedError – The requested adsorbate is neither a molecule
 supported by ASE nor a defined adsorbate in ccu.adsorption.
 adsorbates.

	Returns:

	An ase.Atoms instance representing the requested adsorbate.

ccu.adsorption.cli module

This module contains the ccu.structure package CLI logic.

ccu.adsorption.sitefinder module

Defines the AdsorptionSite, SiteFinder, and MOFSiteFinder classes.

	
class ccu.adsorption.sitefinder.AdsorptionSite(location: Sequence[float], description: str, alignments: Iterable[SiteAlignment], surface_norm: Sequence[float])

	Bases: object

An adsorption site for an adsorbate.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the unit normal vector for

	site. (the surface hosting the adsorption) –

	
class ccu.adsorption.sitefinder.MOFSite(location: Sequence[float], description: str, alignment_atoms: Iterable[Atom], site_anchor: Sequence[float], surface_norm: Sequence[float], intermediate_alignments: bool = False)

	Bases: AdsorptionSite

An adsorption site within a MOF.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the normal vector for the
surface hosting the adsorption site.

	intermediate_alignments – A boolean indicating whether or not to
consider intermediate alignments.

	
create_alignments(alignment_atoms: Iterable[Atom], site_anchor: Sequence[float]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	Creates the SiteAlignment objects for a MOFSite.

	Parameters:

	
	alignment_atoms – An iterable containing ase.Atom instances which
will be used to define alignment directions.

	site_anchor – A sequence of floats representing a reference location
using for defining alignment directions. This is usually the
position of the metal atom in the site.

	Returns:

	A list of SiteAlignment instances representing the alignments for a
MOFSite instance.

	
create_intermediate_alignments(colinear_vectors: Iterable[SiteAlignment]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	

	
class ccu.adsorption.sitefinder.MOFSiteFinder(structure: Atoms)

	Bases: SiteFinder

A SiteFinder subclass which finds adsorption sites on MOF surfaces.

Currently, the atoms bonded to the metal within the SBU must possess tags
of 1 and the metal must possess a tag of 2 for the implementation to work
correctly.

	Parameters:

	structure – An ase.Atoms object representing a metal-organic framework.

	
property adjacent_linkers: list[ase.atom.Atom]

	A list of ase.Atom instances representing two adjacent linker
atoms.

	
create_between_linker_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
between the MOF linker atoms.

	
create_linker_sites() → list[ccu.adsorption.sitefinder.MOFSite]

	Returns a list of MOFSite instances representing adsorption sites
centred on the MOF linker atoms.

	
create_metal_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
on the MOF metal atom.

	
property sbu_metal: Atom

	An ase.Atom instance representing the metal atom within the SBU of
the MOF.

	
sites() → list[ccu.adsorption.sitefinder.AdsorptionSite]

	Determines all unique SBU adsorption sites for a given MOF.

Note that the AdsorptionSites are defined such that the first and
second elements in their “alignment_atoms” attribute are linker atoms
and the third element is the metal.

	Returns:

	A list of AdsorptionSite instances representing the SBU adsorption
sites of the given MOF.

	
property surface_norm: array

	A unit vector normal to the plane determined by two adjacent linker
atoms and the metal within the SBU.

	
class ccu.adsorption.sitefinder.SiteAlignment(alignment_vector: Sequence[float], description: str)

	Bases: object

An alignment that an adsorbate can assume on a site.

	Variables:

	
	vector – A numpy.array representing the alignment vector as a unit
vector.

	description – A string describing the site alignment.

	
class ccu.adsorption.sitefinder.SiteFinder

	Bases: ABC

An abstract base class for objects which find adsorption sites
for particular surfaces.

Subclasses must define the abstract method “sites” which returns all
adsorption sites for a given structure.

	
abstract sites() → Iterable[AdsorptionSite]

	Subclasses should override this method.

Module contents

ccu.cli package

Submodules

ccu.cli.main module

Module that contains the command line app.

Why does this file exist, and why not put this in __main__?

You might be tempted to import things from __main__ later, but that will
cause problems: the code will get executed twice:

	When you run python -m ccu python will execute
__main__.py as a script. That means there won’t be any
ccu.__main__ in sys.modules.

	When you import __main__ it will get executed again (as a module) because
there’s no ccu.__main__ in sys.modules.

Also see (1) from https://click.palletsprojects.com/en/5.x/setuptools/
#setuptools-integration

	
ccu.cli.main.add_subcommands()

	

Module contents

ccu.structure package

Submodules

ccu.structure.axisfinder module

This module defines functions to determine a molecule’s orientation axes.

The function get_axes returns all three orientation axes for a given molecule.
For example,

>>> import ase
>>> from ccu.structure.axisfinder import get_axes
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> get_axes(coh)
(array([1., 0., 0.]), array([0., 1., 0.]), array([0., 0., 1.]))

The function find_farthest_atoms returns the two atoms within a molecule whose
separation is the greatest. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_farthest_atoms
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_farthest_atoms(coh)
(Atom('C', [0.0, 0.0, 0.0], index=0), Atom('O', [-2.0, 0.0, 0.0], index=1))

The function find_primary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_primary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_primary_axis(coh)
array([1., 0., 0.])

The function find_secondary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_secondary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_secondary_axis(coh)
array([0., 1., 0.])

The function find_tertiary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_tertiary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_tertiary_axis(coh)
array([0., 0., 1.])

	
ccu.structure.axisfinder.find_farthest_atoms(molecule: Atoms, tol: float = 1e-05) → tuple[ase.atoms.Atoms]

	Finds the two atoms in the molecule separated by the greatest distance.

In molecules for which there are several pairs of atoms with equidistant
separations, this function will return the pair of atoms with lowest
indices whose separation is within a given tolerance of the largest
atomic separation in the molecule. Each pair is sorted according to the
index of the lowest index atom and then the index of the second atom. For
.. rubric:: Example

	If atoms 0 and 1 have the same separation as atoms 2 and 3, atoms
0 and 1 will be returned since 0 < 2.

	If atoms 0 and 1 have the same separation as atoms 0 and 3, atoms
0 and 1 will be returned since 1 < 3.

	If atoms 1 and 2 have the same separation as atoms 0 and 4, atoms
0 and 4 will be returned since 0 < 1.

	If atoms 1 and 2 have the same separation as atoms 0 and 2, atoms
0 and 2 will be returned since 0 < 1.

	Parameters:

	
	molecule – The molecule for whom the two farthest atoms are to be
determined.

	tol – A float indicating the resolution (in Angstroms) between atomic
distances.

	Returns:

	A tuple containing the two atoms in the molecule separated by the
greatest distance. The atoms are ordered by lowest index within the
structure.

	
ccu.structure.axisfinder.find_primary_axis(molecule: Atoms) → array

	Determines the unit vector representing the primary orientation axis of
a molecule.

The primary axis is defined as the unit vector which is parallel to the
direction vector between the two most distant atoms in the molecule and
points from the higher index atom to the lower index atom.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
primary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
primary orientation axis. Note that for zero-dimensional molecules,
this function will return the zero vector.

	
ccu.structure.axisfinder.find_secondary_axis(molecule: Atoms, min_distance: float = 0.1) → array

	Determines the unit vector representing the secondary orientation axis
of a molecule.

Let L be the line between the two farthest atoms in the molecule, let v be
the vector which defines the primary axis, and let P be the position of
the atom farthest from L. Further, let w be the vector from L to P, and
let z be the component of w which is orthogonal to v. The secondary axis
is defined as the unit vector in the direction of z.

	Parameters:

	
	molecule – An ase.Atoms instance representing the molecule for whom the
secondary axis is to be determined.

	min_distance – A float specifying the minimum distance from the primary
axis (in Angstroms) to be considered for defining the secondary
axis. Defaults to 0.1.

	Returns:

	A numpy.array representing a unit vector in the direction of the
secondary orientation axis. Note that for zero- and one-dimensional
molecules, this function will return the zero vector.

	
ccu.structure.axisfinder.find_tertiary_axis(molecule: Atoms) → array

	Determines the unit vector representing the tertiary orientation axis
of a molecule.

The tertiary orientation axis is simply the cross product of the primary
and secondary orientation axes. See find_primary_axis and
find_secondary_axis for information on how these axes are defined.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
tertiary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
tertiary orientation axis. Note that if the molecule is zero- or
one-dimensional, this function will return the zero vector.

	
ccu.structure.axisfinder.get_axes(molecule: Atoms) → tuple[numpy.array]

	Determines a molecule’s three orientation axes.

The primary axis is defined as the vector between the two most distant
atoms. The secondary axis is defined as the orthogonal component (to the
primary axis) of the vector from the primary axis to the atom farthest
from the line between the two most distant atoms. The tertiary axis is the
cross product of the primary and secondary axes. The axes so defined are
orthogonal. Note that if the molecule is unimolecular, all three vectors
will be the zero vector, and that if the molecule is linear only the
primary axis will be nonzero.

	Parameters:

	molecule – An ase.Atoms instance whose axes are to be determined.

	Returns:

	A tuple containing unit vectors reprsenting the three orientation
axes. The first, second, and third entries are the primary, secondary,
and tertiary axes, respectively. For nonlinear molecules, the axes
form an orthonormal set.

ccu.structure.cli module

This module contains the ccu.structure package CLI logic.

ccu.structure.comparator module

This module defines the Comparator class.

The Comparator class can be used to determine teh similarity of two structures
as follows:

>>> import ase
>>> from ccu.structure.comparator import Comparator
>>> co1 = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> co2 = ase.Atoms('CO', positions=[[0, 1, 1], [1, 1, 1]])
>>> oc = ase.Atoms('OC', positions=[[0, 0, 0], [1, 0, 0]])
>>> Comparator.check_similarity(co1, co2)
True
>>> Comparator.check_similarity(co1, oc)
False

	
class ccu.structure.comparator.Comparator

	Bases: object

An object which compares the similarity of two structures.

	
static calculate_cumulative_displacement(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → float

	Calculates the cumulative displacement of each atomic position in
fingerprint2 relative to the corresponding atomic position in
fingerprint1.

The cumulative displacement is defined as follows:

Note that each row in each np.ndarray associated with each histogram
key corresponds to a displacement vector between two atoms. With each
such displacement vector in the histogram of fingerprint1, we can
identify a corresponding displacement vector in the histogram of
fingerprint2 as the displacement vector associated with the same
histogram key and index. We then define a difference vector as the
difference between a displacement vector in fingerprint1 and its
counterpart in fingerprint2. The set of all difference vectors is
defined on the basis of fingerprint1. That is, if X is the set of all
displacement vectors in fingerprint1 and Y is the set of all
corresponding vectors in fingerprint2, the set of all difference
vectors is the set of all vectors x - y where x is a displacement
vector in fingerprint1 and y is the corresponding displacement vector
in Y. (Note that this requires that the histogram of fingerprint2 must
include all the keys that that of the histogram of fingerprint1
includes. Additionally, this requires that for each key in the
histogram of fingerprint1, the value in fingerprint2 includes at least
as many displacement vectors as the value in fingerprint1.) The
cumulative displacement is then defined as the sum of the norms of all
the difference vectors corresponding to fingerprint1 and fingerprint2.

	Parameters:

	
	fingerprint1 – The Fingerprint instance used as a reference to
calculate the cumulative displacement.

	fingerprint2 – The second Fingerprint instance used to calculate the
cumulative displacement.

	Returns:

	A float representing the cumulative displacement for fingerprint2
relative to fingerprint1.

	
static check_similarity(structure1: Atoms, structure2: Atoms, tol: float = 0.05) → bool

	Determines whether the atomic positions of two structures are
similar to within a given tolerance.

	Parameters:

	
	structure1 – An ase.Atoms instance representing the first structure
to compare.

	structure2 – An ase.Atoms instance representing the second structure
to compare.

	tol – A float specifying the tolerance for the cumulative
displacement for fingerprint in Angstroms. Defaults to 5e-2.

	Returns:

	A boolean indicating whether or not the two structures are similar
within the specified tolerance. Two structures are similar if they
can be superimposed via a translation operation.

	
static cosort_fingerprints(fingerprints1: Iterable[Fingerprint], fingerprints2: Iterable[Fingerprint]) → tuple[ccu.structure.fingerprint.Fingerprint]

	Determines the ordering of the second supplied iterable of
Fingerprints which minimizes the cumulative displacement across the two
iterables of Fingerprints.

	Parameters:

	
	fingerprints1 – An iterable containing Fingerprint instances.

	fingerprints2 – An iterable containing Fingerprint instances.

	Note that the two iterables must be of the same length and that the

	values() methods of all Fingerprint instances across the two

	iterables must be of the same length.

	Returns:

	A tuple containing the ordering of fingerprints2 which minimizes
the cumulative displacement across the two iterables of
Fingerprints.

	
static cosort_histograms(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → dict[str, numpy.ndarray]

	Determines the ordering of the second fingerprint’s histogram which
minimizes the cumulative displacement of the atoms in each structure.

The two supplied Fingerprints need not have the same keys or the same
number of entries under each key. Such cases are handled as follows:

Let k be a key in both the histograms of fingerprint1 and fingerprint2.
Let p be the iterable corresponding to the key k in the histogram of
fingerprint1, and let q be the iterable corresponding to the key k in
the histogram of fingerprint2.

If len(p) > len(q), then q is ordered according to its match with the
first len(q) elements of p.

If len(p) <= len(q), then q is ordered according to the best match with
p and the first len(p) elements of q.

	Parameters:

	
	fingerprint1 – The Fingerprint object to be used as a reference for
each displacement in the other Fingerprint’s histogram.

	fingerprint2 – The Fingerprint object for which the optimally
ordered histogram is to be determined.

	Returns:

	A dict constructed from fingerprint2._histogram mapping chemical
symbols to a numpy.ndarray containing the displacement vectors to
atoms with the corresponding chemical symbol. The order of the
displacement vectors is such that the cumulative displacement of
the displacement vectors is minimized relative to
fingerprint1._histogram.

ccu.structure.fingerprint module

This module defines the Fingerprint class.

	
class ccu.structure.fingerprint.Fingerprint(structure: Atoms, reference: int, indices: Iterable[int] = None)

	Bases: MutableMapping

A set of displacement vectors relative to a particular atom within an
ase.Atoms object.

The displacement vectors for atoms of a given chemical symbol can be
accessed through the MutableMapping interface. For example:

structure = ase.Atoms(‘CO’, positions=[[0, 0, 0], [1, 0, 0]])
fp = Fingerprint(structure, 0, [0, 1])
fp[‘C’]

	Variables:

	
	structure – The ase.Atoms instance to which the Fingerprint instance is
related. reference: An int indicating the index of the reference
atom used to construct the Fingerprint instance.

	indices – A tuple indicating the indices of the atoms within the
structure used to construct the Fingerprint instance.

	
classmethod from_structure(structure: Atoms) → list[ccu.structure.fingerprint.Fingerprint]

	Creates a list of Fingerprint objects corresponding to each atom
within an ase.Atoms object.

	Parameters:

	structure – An ase.Atoms instance representing the structure from
which to create the list of Fingerprints.

	Returns:

	A list of the Fingerprints for each atom.

ccu.structure.geometry module

This module defines useful geometry related functions for ase.Atoms
instances.

	
ccu.structure.geometry.calculate_separation(structure1: Atoms, structure2: Atoms) → float

	Calculates the separation between two ase.Atoms instances defined as
the smallest distance between an atom in one structure and an atom in the
second structure.

	Parameters:

	
	structure1 – An ase.Atoms instance.

	structure2 – An ase.Atoms instance.

	Returns:

	A float representing the separation between the two structures.

ccu.structure.resizecell module

This script resizes the c vector of all the .traj files in the current
working directory to the specified positive number (default is 10)

	
ccu.structure.resizecell.run(structure: Path, length: float)

	Resize c-vector of structure and centres atoms in cell.

	Parameters:

	
	structure – A pathlib.Path instance leading to the structure whose cell
is to be resized.

	length – A float specifying the new c-vector of the cell.

ccu.structure.symmetry module

This class defines the SymmetryOperation and Symmetry classes and
subclasses.

Symmetry and SymmetryOperation subclasses can be used as follows:

>>> import ase
>>> from ccu.structure.symmetry import Rotation, RotationSymmetry
>>> rotation1 = Rotation(90, [0, 0, 1])
>>> symmetry1 = RotationSymmetry(rotation1)
>>> co = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotated = rotation1.transform(co)
>>> rotated.positions
array([[0.000000e+00, 0.000000e+00, 0.000000e+00],
 [6.123234e-17, 1.000000e+00, 0.000000e+00]])
>>> symmetry1.check_symmetry(co)
False
>>> h2 = ase.Atoms('HH', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotation2 = Rotation(180, [0, 0, 1])
>>> symmetry2 = RotationSymmetry(rotation2)
>>> symmetry2.check_symmetry(h2)
True

	
class ccu.structure.symmetry.Inversion

	Bases: SymmetryOperation

	
class ccu.structure.symmetry.Rotation(angle: float, axis: Iterable[float])

	Bases: SymmetryOperation

A rotation operation.

	Variables:

	
	angle – A float specifying a rotation angle in degrees.

	axis – A numpy.array representing the axis of rotation.

	
as_matrix() → ndarray

	Returns the rotation operation of this instance as a numpy.ndarray
which represents the rotation matrix.

	
transform(structure: Atoms) → Atoms

	Rotates the given structure by the angle and about the axis
specified as attributes of the Rotation object.

	Parameters:

	structure – An ase.Atoms instance representing structure to be
rotated.

	Returns:

	A rotated copy of the original ase.Atoms instance.

	
class ccu.structure.symmetry.RotationSymmetry(operation: Rotation)

	Bases: Symmetry

A rotational symmetry.

	
check_symmetry(structure: Atoms, tol: float = 0.05) → bool

	Determines the symmetry represented by the instance belongs to the
given structure.

	Parameters:

	
	structure – An ase.Atoms instance representing the structure whose
symmetry is to be determined.

	tol – A float specifying the absolute tolerance for positions.
Defaults to 5e-2.

	Returns:

	
	A boolean indicating whether or not the given structure possesses
	the symmetry of the RotationSymmetry object subject to the
specified tolerance.

	
property operation: Rotation

	The Rotation instance associated with this RotationSymmetry
instance.

	
class ccu.structure.symmetry.Symmetry

	Bases: ABC

An abstract base class for molecule symmetries.

	
abstract check_symmetry(structure: Atoms, tol: float) → bool

	Subclasses should override this method.

	
abstract property operation: SymmetryOperation

	Subclasses should override this method.

	
class ccu.structure.symmetry.SymmetryOperation

	Bases: ABC

An abstract base class for symmetry operations.

	
abstract transform(structure: Atoms) → Atoms

	Subclasses should override this method.

Module contents

ccu

	ccu package
	Subpackages
	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module

	ccu.adsorption.adsorbateorientation module

	ccu.adsorption.adsorbates module

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module

	ccu.structure.cli module

	ccu.structure.comparator module

	ccu.structure.fingerprint module

	ccu.structure.geometry module

	ccu.structure.resizecell module

	ccu.structure.symmetry module

	Module contents

	Module contents

ccu package

Subpackages

	ccu.adsorption package
	Submodules

	ccu.adsorption.adsorbatecomplex module
	AdsorbateComplex
	AdsorbateComplex.write()

	AdsorbateComplexFactory
	AdsorbateComplexFactory.adsorbate

	AdsorbateComplexFactory.adsorbate_orientations()

	AdsorbateComplexFactory.next_complex()

	AdsorbateComplexFactory.orient_adsorbate()

	AdsorbateComplexFactory.place_adsorbate()

	AdsorbateComplexFactory.structure

	run()

	ccu.adsorption.adsorbateorientation module
	AdsorbateOrientation

	AdsorbateOrientationFactory
	AdsorbateOrientationFactory.create_orientations()

	ccu.adsorption.adsorbates module
	get_adsorbate()

	ccu.adsorption.cli module

	ccu.adsorption.sitefinder module
	AdsorptionSite

	MOFSite
	MOFSite.create_alignments()

	MOFSite.create_intermediate_alignments()

	MOFSiteFinder
	MOFSiteFinder.adjacent_linkers

	MOFSiteFinder.create_between_linker_site()

	MOFSiteFinder.create_linker_sites()

	MOFSiteFinder.create_metal_site()

	MOFSiteFinder.sbu_metal

	MOFSiteFinder.sites()

	MOFSiteFinder.surface_norm

	SiteAlignment

	SiteFinder
	SiteFinder.sites()

	Module contents

	ccu.cli package
	Submodules

	ccu.cli.main module
	add_subcommands()

	Module contents

	ccu.structure package
	Submodules

	ccu.structure.axisfinder module
	find_farthest_atoms()

	find_primary_axis()

	find_secondary_axis()

	find_tertiary_axis()

	get_axes()

	ccu.structure.cli module

	ccu.structure.comparator module
	Comparator
	Comparator.calculate_cumulative_displacement()

	Comparator.check_similarity()

	Comparator.cosort_fingerprints()

	Comparator.cosort_histograms()

	ccu.structure.fingerprint module
	Fingerprint
	Fingerprint.from_structure()

	ccu.structure.geometry module
	calculate_separation()

	ccu.structure.resizecell module
	run()

	ccu.structure.symmetry module
	Inversion

	Rotation
	Rotation.as_matrix()

	Rotation.transform()

	RotationSymmetry
	RotationSymmetry.check_symmetry()

	RotationSymmetry.operation

	Symmetry
	Symmetry.check_symmetry()

	Symmetry.operation

	SymmetryOperation
	SymmetryOperation.transform()

	Module contents

Module contents

Utilities for computational catalysis.

ccu.adsorption package

Submodules

ccu.adsorption.adsorbatecomplex module

Defines the AdsorbateComplex and AdsorbateComplexFactory classes.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplex(site_description: str, orientation_description: str, structure_desription: str, structure: Atoms)

	Bases: object

An adsorbate-surface complex.

	Variables:

	
	structure_description – A string describing the surface structure.

	site_description – A string describing the adsorption site.

	orientation_description – A string describing the orientation of the
adsorbate.

	structure – An ase.Atoms object of the adsorbate-surface complex.

	
write(destination: Path = None) → Path

	Writes the AdsorbateComplex object to an ASE .traj file.

	Parameters:

	destination – A pathlib.Path instance indicating the directory in
which to write the .traj file. Defaults to the current working
directory.

	Returns:

	A pathlib.Path instance indicating the path of the written .traj
file.

	
class ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory(adsorbate: Atoms, structure: Atoms, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateComplex factory.

Given an adsorbate, a structure, and various configuration specifications
(e.g., “symmetric”, “vertical”), an AdsorbateComplexFactory determines all
of the adsorption sites and corresponding adsorbate configurations.

	Variables:

	
	_adsorbate – An ase.Atoms instance representing the adsorbate.

	_structure – An ase.Atoms instance representing the surface structure.

	separation – How far (in Angstroms) the adsorbate should be placed from
the surface.

	special_centres – A boolean indicating whether or not atom-centred
placement will be used.

Note that in addition to be set to true, the ase.Atoms instance
passed as the adsorbate argument must have the key ‘special
centres’ in its info attribute. Further, this key must map to an
iterable whose elements specify the indices of the atoms to be used
to centre the adsorbate. If this key is not present in the info
attribute, then the atom with index 0 will be used to centre the
adsorbate.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric.

	vertical – A boolean indicating whether or not to consider vertical
adsorption sites.

	
property adsorbate: Atoms

	

	
adsorbate_orientations(site: AdsorptionSite) → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Returns a list of all adsorbate orientations for a given
adsorption site.

	Parameters:

	site – A sitefinder.AdsorptionSite instance representing the site
for which to generate adsorbate orientations.

	
next_complex(site: AdsorptionSite, adsorbate_tag: int = -99) → Iterator[AdsorbateComplex]

	Yields next adsorbate-surface complex for a given site as an
AdsorbateComplex.

	Parameters:

	
	site – A sitefinder.AdsorptionSite instance which represents the
site for which to generate complexes.

	adsorbate_tag – An integer with which to tag the adsorbate to
enable tracking. Defaults to -99.

	
orient_adsorbate(orientation: AdsorbateOrientation) → Atoms

	Orients the AdsorbateComplexFactory’s adsorbate such that its
primary axis is aligned with the primary orientation vector of the
given AdsorbateOrientation object and its secondary axis is in the
plane defined by the primary axis of the adsorbate and the secondary
orientation.

	Parameters:

	orientation – An adsorbateorientation.AdsorbateOrientation instance
representing the orientation in which the adsorbate is to be
directed.

	Returns:

	An ase.Atoms instance representing the oriented adsorbate as a
copy of the AdsorbateComplexFactory’s adsorbate.

	
place_adsorbate(adsorbate: Atoms, site: AdsorptionSite, centre: array = None)

	Moves adsorbate to specified site respecting the minimum specified
separation.

	Parameters:

	
	new_adsorbate – An ase.Atoms instance representing theadsorbate to
be moved.

	centre – A numpy.array designating the centre with which to align
the adsorbate.

	site – A sitefinder.AdsorptionSite instance representing the site
on which the adsorbate is to be placed.

	
property structure: Atoms

	

	
ccu.adsorption.adsorbatecomplex.run(adsorbate: str, structure: Path, destination: Path = None, separation: float = 1.8, special_centres: bool = False, symmetric: bool = False, vertical: bool = False)

	Creates MOF-adsorbate complexes for adsorption configurations on the
SBU of the given MOF and write them to a .traj file.

	Parameters:

	
	adsorbate – A string indicating the name of the adsorbate to place on
the surface.

	structure – A pathlib.Path instance indicating the path to the surface
on which the adsorbate will be placed.

	destination – A pathlib.Path instance indicating the directory in which
to write the .traj files. The directory is created if it does not
exist. Defaults to the current working directory.

	separation – A float indicating how far (in Angstroms) the adsorbate
should be placed from the surface. Defaults to 1.8.

	symmetric – A boolean indicating whether or not the adsorbate is to be
treated as symmetric. Defaults to False.

	vertical – A boolean indicating whether or not vertical adsorption
configurations are to be generated. Defaults to False.

ccu.adsorption.adsorbateorientation module

This module defines the AdsorbateOrientation and AdsorbateOrientationFactory
classes.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientation(description: str, orientation_vectors: Sequence[array])

	Bases: object

An orientation of an adsorbate.

An AdsorbateOrientation object contains the information required to
unambiguously orient an adsorbate in space.

	Variables:

	
	description – A string describing the adsorbate orientation.

	vectors – A tuple of numpy.array instances which are the vectors along
which an adsorbate will be oriented. The sequence should contain
two linearly independent unit vectors. The first vector is the
primary orientation axis. The secondary vector is secondary
orientation axis.

	
class ccu.adsorption.adsorbateorientation.AdsorbateOrientationFactory(site: AdsorptionSite, adsorbate: Atoms, force_symmetry: bool = False, vertical: bool = False)

	Bases: object

An AdsorbateOrientation factory.

An AdsorbateOrientationFactory creates a collection of
AdsorbateOrientation objects for a given AdsorptionSite subject to
symmetry and orientation specifications.

	Variables:

	
	site – A sitefinder.AdsorptionSite instance indicating site for which
the orientations are to be created.

	adsorbate – An ase.Atoms instance representing the adsorbate which will
assume the orientations.

	force_symmetry – A boolean indicating whether or not to force the
adsorbate to be treated as symmetric.

	vertical – A boolean indicating whether or not vertical orientations
will be created.

	
create_orientations() → list[ccu.adsorption.adsorbateorientation.AdsorbateOrientation]

	Creates a list of AdsorbateOrientation objects.

	Returns:

	A list of AdsorbateOrientation objects.

ccu.adsorption.adsorbates module

This module defines CO2RR, NRR/UOR, OER/ORR, and HER intermediates.

CO2RR Intermediates from Chem. Rev. 2019, 119, 12, 7610-7672.

NRR/UOR Intermediates from ACS Catal. 2023, 13, 3, 1926-1933. and
Angew. Chem. Int. Ed. 2021, 60, 51, 26656.

Bond lengths, angles and positions from cccbdb.nist.gov.

Usage:

>>> from ccu.adsorption.adsorbates import get_adsorbate
>>> get_adsorbate('CO2')
Atoms(symbols='CO2', pbc=False)

	
ccu.adsorption.adsorbates.get_adsorbate(adsorbate: str) → Atoms

	Returns the requested adsorbate as an ase.Atoms object.

	Parameters:

	adsorbate – The name of the adsorbate to retrieve as a string
(case-insensitive).

	Raises:

	NotImplementedError – The requested adsorbate is neither a molecule
 supported by ASE nor a defined adsorbate in ccu.adsorption.
 adsorbates.

	Returns:

	An ase.Atoms instance representing the requested adsorbate.

ccu.adsorption.cli module

This module contains the ccu.structure package CLI logic.

ccu.adsorption.sitefinder module

Defines the AdsorptionSite, SiteFinder, and MOFSiteFinder classes.

	
class ccu.adsorption.sitefinder.AdsorptionSite(location: Sequence[float], description: str, alignments: Iterable[SiteAlignment], surface_norm: Sequence[float])

	Bases: object

An adsorption site for an adsorbate.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the unit normal vector for

	site. (the surface hosting the adsorption) –

	
class ccu.adsorption.sitefinder.MOFSite(location: Sequence[float], description: str, alignment_atoms: Iterable[Atom], site_anchor: Sequence[float], surface_norm: Sequence[float], intermediate_alignments: bool = False)

	Bases: AdsorptionSite

An adsorption site within a MOF.

	Variables:

	
	location – A numpy.array representing the location of the adsorption
site.

	description – A description of the adsorption site as a string.

	alignments – A list of SiteAlignment objects defining alignments for
the site.

	surface_norm – A numpy.array representing the normal vector for the
surface hosting the adsorption site.

	intermediate_alignments – A boolean indicating whether or not to
consider intermediate alignments.

	
create_alignments(alignment_atoms: Iterable[Atom], site_anchor: Sequence[float]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	Creates the SiteAlignment objects for a MOFSite.

	Parameters:

	
	alignment_atoms – An iterable containing ase.Atom instances which
will be used to define alignment directions.

	site_anchor – A sequence of floats representing a reference location
using for defining alignment directions. This is usually the
position of the metal atom in the site.

	Returns:

	A list of SiteAlignment instances representing the alignments for a
MOFSite instance.

	
create_intermediate_alignments(colinear_vectors: Iterable[SiteAlignment]) → list[ccu.adsorption.sitefinder.SiteAlignment]

	

	
class ccu.adsorption.sitefinder.MOFSiteFinder(structure: Atoms)

	Bases: SiteFinder

A SiteFinder subclass which finds adsorption sites on MOF surfaces.

Currently, the atoms bonded to the metal within the SBU must possess tags
of 1 and the metal must possess a tag of 2 for the implementation to work
correctly.

	Parameters:

	structure – An ase.Atoms object representing a metal-organic framework.

	
property adjacent_linkers: list[ase.atom.Atom]

	A list of ase.Atom instances representing two adjacent linker
atoms.

	
create_between_linker_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
between the MOF linker atoms.

	
create_linker_sites() → list[ccu.adsorption.sitefinder.MOFSite]

	Returns a list of MOFSite instances representing adsorption sites
centred on the MOF linker atoms.

	
create_metal_site() → MOFSite

	Returns a MOFSite instance representing an adsorption site centred
on the MOF metal atom.

	
property sbu_metal: Atom

	An ase.Atom instance representing the metal atom within the SBU of
the MOF.

	
sites() → list[ccu.adsorption.sitefinder.AdsorptionSite]

	Determines all unique SBU adsorption sites for a given MOF.

Note that the AdsorptionSites are defined such that the first and
second elements in their “alignment_atoms” attribute are linker atoms
and the third element is the metal.

	Returns:

	A list of AdsorptionSite instances representing the SBU adsorption
sites of the given MOF.

	
property surface_norm: array

	A unit vector normal to the plane determined by two adjacent linker
atoms and the metal within the SBU.

	
class ccu.adsorption.sitefinder.SiteAlignment(alignment_vector: Sequence[float], description: str)

	Bases: object

An alignment that an adsorbate can assume on a site.

	Variables:

	
	vector – A numpy.array representing the alignment vector as a unit
vector.

	description – A string describing the site alignment.

	
class ccu.adsorption.sitefinder.SiteFinder

	Bases: ABC

An abstract base class for objects which find adsorption sites
for particular surfaces.

Subclasses must define the abstract method “sites” which returns all
adsorption sites for a given structure.

	
abstract sites() → Iterable[AdsorptionSite]

	Subclasses should override this method.

Module contents

ccu.cli package

Submodules

ccu.cli.main module

Module that contains the command line app.

Why does this file exist, and why not put this in __main__?

You might be tempted to import things from __main__ later, but that will
cause problems: the code will get executed twice:

	When you run python -m ccu python will execute
__main__.py as a script. That means there won’t be any
ccu.__main__ in sys.modules.

	When you import __main__ it will get executed again (as a module) because
there’s no ccu.__main__ in sys.modules.

Also see (1) from https://click.palletsprojects.com/en/5.x/setuptools/
#setuptools-integration

	
ccu.cli.main.add_subcommands()

	

Module contents

ccu.structure package

Submodules

ccu.structure.axisfinder module

This module defines functions to determine a molecule’s orientation axes.

The function get_axes returns all three orientation axes for a given molecule.
For example,

>>> import ase
>>> from ccu.structure.axisfinder import get_axes
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> get_axes(coh)
(array([1., 0., 0.]), array([0., 1., 0.]), array([0., 0., 1.]))

The function find_farthest_atoms returns the two atoms within a molecule whose
separation is the greatest. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_farthest_atoms
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_farthest_atoms(coh)
(Atom('C', [0.0, 0.0, 0.0], index=0), Atom('O', [-2.0, 0.0, 0.0], index=1))

The function find_primary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_primary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_primary_axis(coh)
array([1., 0., 0.])

The function find_secondary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_secondary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_secondary_axis(coh)
array([0., 1., 0.])

The function find_tertiary_axis returns the primary orientation axis for a
given molecule. For example,

>>> import ase
>>> from ccu.structure.axisfinder import find_tertiary_axis
>>> coh = ase.Atoms('COH', positions=[[0, 0, 0], [-2, 0, 0], [-1, 0.5, 0]])
>>> find_tertiary_axis(coh)
array([0., 0., 1.])

	
ccu.structure.axisfinder.find_farthest_atoms(molecule: Atoms, tol: float = 1e-05) → tuple[ase.atoms.Atoms]

	Finds the two atoms in the molecule separated by the greatest distance.

In molecules for which there are several pairs of atoms with equidistant
separations, this function will return the pair of atoms with lowest
indices whose separation is within a given tolerance of the largest
atomic separation in the molecule. Each pair is sorted according to the
index of the lowest index atom and then the index of the second atom. For
.. rubric:: Example

	If atoms 0 and 1 have the same separation as atoms 2 and 3, atoms
0 and 1 will be returned since 0 < 2.

	If atoms 0 and 1 have the same separation as atoms 0 and 3, atoms
0 and 1 will be returned since 1 < 3.

	If atoms 1 and 2 have the same separation as atoms 0 and 4, atoms
0 and 4 will be returned since 0 < 1.

	If atoms 1 and 2 have the same separation as atoms 0 and 2, atoms
0 and 2 will be returned since 0 < 1.

	Parameters:

	
	molecule – The molecule for whom the two farthest atoms are to be
determined.

	tol – A float indicating the resolution (in Angstroms) between atomic
distances.

	Returns:

	A tuple containing the two atoms in the molecule separated by the
greatest distance. The atoms are ordered by lowest index within the
structure.

	
ccu.structure.axisfinder.find_primary_axis(molecule: Atoms) → array

	Determines the unit vector representing the primary orientation axis of
a molecule.

The primary axis is defined as the unit vector which is parallel to the
direction vector between the two most distant atoms in the molecule and
points from the higher index atom to the lower index atom.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
primary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
primary orientation axis. Note that for zero-dimensional molecules,
this function will return the zero vector.

	
ccu.structure.axisfinder.find_secondary_axis(molecule: Atoms, min_distance: float = 0.1) → array

	Determines the unit vector representing the secondary orientation axis
of a molecule.

Let L be the line between the two farthest atoms in the molecule, let v be
the vector which defines the primary axis, and let P be the position of
the atom farthest from L. Further, let w be the vector from L to P, and
let z be the component of w which is orthogonal to v. The secondary axis
is defined as the unit vector in the direction of z.

	Parameters:

	
	molecule – An ase.Atoms instance representing the molecule for whom the
secondary axis is to be determined.

	min_distance – A float specifying the minimum distance from the primary
axis (in Angstroms) to be considered for defining the secondary
axis. Defaults to 0.1.

	Returns:

	A numpy.array representing a unit vector in the direction of the
secondary orientation axis. Note that for zero- and one-dimensional
molecules, this function will return the zero vector.

	
ccu.structure.axisfinder.find_tertiary_axis(molecule: Atoms) → array

	Determines the unit vector representing the tertiary orientation axis
of a molecule.

The tertiary orientation axis is simply the cross product of the primary
and secondary orientation axes. See find_primary_axis and
find_secondary_axis for information on how these axes are defined.

	Parameters:

	molecule – An ase.Atoms instance representing the molecule for whom the
tertiary axis is to be determined.

	Returns:

	A numpy.array representing a unit vector in the direction of the
tertiary orientation axis. Note that if the molecule is zero- or
one-dimensional, this function will return the zero vector.

	
ccu.structure.axisfinder.get_axes(molecule: Atoms) → tuple[numpy.array]

	Determines a molecule’s three orientation axes.

The primary axis is defined as the vector between the two most distant
atoms. The secondary axis is defined as the orthogonal component (to the
primary axis) of the vector from the primary axis to the atom farthest
from the line between the two most distant atoms. The tertiary axis is the
cross product of the primary and secondary axes. The axes so defined are
orthogonal. Note that if the molecule is unimolecular, all three vectors
will be the zero vector, and that if the molecule is linear only the
primary axis will be nonzero.

	Parameters:

	molecule – An ase.Atoms instance whose axes are to be determined.

	Returns:

	A tuple containing unit vectors reprsenting the three orientation
axes. The first, second, and third entries are the primary, secondary,
and tertiary axes, respectively. For nonlinear molecules, the axes
form an orthonormal set.

ccu.structure.cli module

This module contains the ccu.structure package CLI logic.

ccu.structure.comparator module

This module defines the Comparator class.

The Comparator class can be used to determine teh similarity of two structures
as follows:

>>> import ase
>>> from ccu.structure.comparator import Comparator
>>> co1 = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> co2 = ase.Atoms('CO', positions=[[0, 1, 1], [1, 1, 1]])
>>> oc = ase.Atoms('OC', positions=[[0, 0, 0], [1, 0, 0]])
>>> Comparator.check_similarity(co1, co2)
True
>>> Comparator.check_similarity(co1, oc)
False

	
class ccu.structure.comparator.Comparator

	Bases: object

An object which compares the similarity of two structures.

	
static calculate_cumulative_displacement(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → float

	Calculates the cumulative displacement of each atomic position in
fingerprint2 relative to the corresponding atomic position in
fingerprint1.

The cumulative displacement is defined as follows:

Note that each row in each np.ndarray associated with each histogram
key corresponds to a displacement vector between two atoms. With each
such displacement vector in the histogram of fingerprint1, we can
identify a corresponding displacement vector in the histogram of
fingerprint2 as the displacement vector associated with the same
histogram key and index. We then define a difference vector as the
difference between a displacement vector in fingerprint1 and its
counterpart in fingerprint2. The set of all difference vectors is
defined on the basis of fingerprint1. That is, if X is the set of all
displacement vectors in fingerprint1 and Y is the set of all
corresponding vectors in fingerprint2, the set of all difference
vectors is the set of all vectors x - y where x is a displacement
vector in fingerprint1 and y is the corresponding displacement vector
in Y. (Note that this requires that the histogram of fingerprint2 must
include all the keys that that of the histogram of fingerprint1
includes. Additionally, this requires that for each key in the
histogram of fingerprint1, the value in fingerprint2 includes at least
as many displacement vectors as the value in fingerprint1.) The
cumulative displacement is then defined as the sum of the norms of all
the difference vectors corresponding to fingerprint1 and fingerprint2.

	Parameters:

	
	fingerprint1 – The Fingerprint instance used as a reference to
calculate the cumulative displacement.

	fingerprint2 – The second Fingerprint instance used to calculate the
cumulative displacement.

	Returns:

	A float representing the cumulative displacement for fingerprint2
relative to fingerprint1.

	
static check_similarity(structure1: Atoms, structure2: Atoms, tol: float = 0.05) → bool

	Determines whether the atomic positions of two structures are
similar to within a given tolerance.

	Parameters:

	
	structure1 – An ase.Atoms instance representing the first structure
to compare.

	structure2 – An ase.Atoms instance representing the second structure
to compare.

	tol – A float specifying the tolerance for the cumulative
displacement for fingerprint in Angstroms. Defaults to 5e-2.

	Returns:

	A boolean indicating whether or not the two structures are similar
within the specified tolerance. Two structures are similar if they
can be superimposed via a translation operation.

	
static cosort_fingerprints(fingerprints1: Iterable[Fingerprint], fingerprints2: Iterable[Fingerprint]) → tuple[ccu.structure.fingerprint.Fingerprint]

	Determines the ordering of the second supplied iterable of
Fingerprints which minimizes the cumulative displacement across the two
iterables of Fingerprints.

	Parameters:

	
	fingerprints1 – An iterable containing Fingerprint instances.

	fingerprints2 – An iterable containing Fingerprint instances.

	Note that the two iterables must be of the same length and that the

	values() methods of all Fingerprint instances across the two

	iterables must be of the same length.

	Returns:

	A tuple containing the ordering of fingerprints2 which minimizes
the cumulative displacement across the two iterables of
Fingerprints.

	
static cosort_histograms(fingerprint1: Fingerprint, fingerprint2: Fingerprint) → dict[str, numpy.ndarray]

	Determines the ordering of the second fingerprint’s histogram which
minimizes the cumulative displacement of the atoms in each structure.

The two supplied Fingerprints need not have the same keys or the same
number of entries under each key. Such cases are handled as follows:

Let k be a key in both the histograms of fingerprint1 and fingerprint2.
Let p be the iterable corresponding to the key k in the histogram of
fingerprint1, and let q be the iterable corresponding to the key k in
the histogram of fingerprint2.

If len(p) > len(q), then q is ordered according to its match with the
first len(q) elements of p.

If len(p) <= len(q), then q is ordered according to the best match with
p and the first len(p) elements of q.

	Parameters:

	
	fingerprint1 – The Fingerprint object to be used as a reference for
each displacement in the other Fingerprint’s histogram.

	fingerprint2 – The Fingerprint object for which the optimally
ordered histogram is to be determined.

	Returns:

	A dict constructed from fingerprint2._histogram mapping chemical
symbols to a numpy.ndarray containing the displacement vectors to
atoms with the corresponding chemical symbol. The order of the
displacement vectors is such that the cumulative displacement of
the displacement vectors is minimized relative to
fingerprint1._histogram.

ccu.structure.fingerprint module

This module defines the Fingerprint class.

	
class ccu.structure.fingerprint.Fingerprint(structure: Atoms, reference: int, indices: Iterable[int] = None)

	Bases: MutableMapping

A set of displacement vectors relative to a particular atom within an
ase.Atoms object.

The displacement vectors for atoms of a given chemical symbol can be
accessed through the MutableMapping interface. For example:

structure = ase.Atoms(‘CO’, positions=[[0, 0, 0], [1, 0, 0]])
fp = Fingerprint(structure, 0, [0, 1])
fp[‘C’]

	Variables:

	
	structure – The ase.Atoms instance to which the Fingerprint instance is
related. reference: An int indicating the index of the reference
atom used to construct the Fingerprint instance.

	indices – A tuple indicating the indices of the atoms within the
structure used to construct the Fingerprint instance.

	
classmethod from_structure(structure: Atoms) → list[ccu.structure.fingerprint.Fingerprint]

	Creates a list of Fingerprint objects corresponding to each atom
within an ase.Atoms object.

	Parameters:

	structure – An ase.Atoms instance representing the structure from
which to create the list of Fingerprints.

	Returns:

	A list of the Fingerprints for each atom.

ccu.structure.geometry module

This module defines useful geometry related functions for ase.Atoms
instances.

	
ccu.structure.geometry.calculate_separation(structure1: Atoms, structure2: Atoms) → float

	Calculates the separation between two ase.Atoms instances defined as
the smallest distance between an atom in one structure and an atom in the
second structure.

	Parameters:

	
	structure1 – An ase.Atoms instance.

	structure2 – An ase.Atoms instance.

	Returns:

	A float representing the separation between the two structures.

ccu.structure.resizecell module

This script resizes the c vector of all the .traj files in the current
working directory to the specified positive number (default is 10)

	
ccu.structure.resizecell.run(structure: Path, length: float)

	Resize c-vector of structure and centres atoms in cell.

	Parameters:

	
	structure – A pathlib.Path instance leading to the structure whose cell
is to be resized.

	length – A float specifying the new c-vector of the cell.

ccu.structure.symmetry module

This class defines the SymmetryOperation and Symmetry classes and
subclasses.

Symmetry and SymmetryOperation subclasses can be used as follows:

>>> import ase
>>> from ccu.structure.symmetry import Rotation, RotationSymmetry
>>> rotation1 = Rotation(90, [0, 0, 1])
>>> symmetry1 = RotationSymmetry(rotation1)
>>> co = ase.Atoms('CO', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotated = rotation1.transform(co)
>>> rotated.positions
array([[0.000000e+00, 0.000000e+00, 0.000000e+00],
 [6.123234e-17, 1.000000e+00, 0.000000e+00]])
>>> symmetry1.check_symmetry(co)
False
>>> h2 = ase.Atoms('HH', positions=[[0, 0, 0], [1, 0, 0]])
>>> rotation2 = Rotation(180, [0, 0, 1])
>>> symmetry2 = RotationSymmetry(rotation2)
>>> symmetry2.check_symmetry(h2)
True

	
class ccu.structure.symmetry.Inversion

	Bases: SymmetryOperation

	
class ccu.structure.symmetry.Rotation(angle: float, axis: Iterable[float])

	Bases: SymmetryOperation

A rotation operation.

	Variables:

	
	angle – A float specifying a rotation angle in degrees.

	axis – A numpy.array representing the axis of rotation.

	
as_matrix() → ndarray

	Returns the rotation operation of this instance as a numpy.ndarray
which represents the rotation matrix.

	
transform(structure: Atoms) → Atoms

	Rotates the given structure by the angle and about the axis
specified as attributes of the Rotation object.

	Parameters:

	structure – An ase.Atoms instance representing structure to be
rotated.

	Returns:

	A rotated copy of the original ase.Atoms instance.

	
class ccu.structure.symmetry.RotationSymmetry(operation: Rotation)

	Bases: Symmetry

A rotational symmetry.

	
check_symmetry(structure: Atoms, tol: float = 0.05) → bool

	Determines the symmetry represented by the instance belongs to the
given structure.

	Parameters:

	
	structure – An ase.Atoms instance representing the structure whose
symmetry is to be determined.

	tol – A float specifying the absolute tolerance for positions.
Defaults to 5e-2.

	Returns:

	
	A boolean indicating whether or not the given structure possesses
	the symmetry of the RotationSymmetry object subject to the
specified tolerance.

	
property operation: Rotation

	The Rotation instance associated with this RotationSymmetry
instance.

	
class ccu.structure.symmetry.Symmetry

	Bases: ABC

An abstract base class for molecule symmetries.

	
abstract check_symmetry(structure: Atoms, tol: float) → bool

	Subclasses should override this method.

	
abstract property operation: SymmetryOperation

	Subclasses should override this method.

	
class ccu.structure.symmetry.SymmetryOperation

	Bases: ABC

An abstract base class for symmetry operations.

	
abstract transform(structure: Atoms) → Atoms

	Subclasses should override this method.

Module contents

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://gitlab.com/ugognw/python-comp-chem-utils/-/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

CompChemUtils could always use more documentation, whether as part of the
official CompChemUtils docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://gitlab.com/ugognw/python-comp-chem-utils/-/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up CompChemUtils for local development:

	Fork CompChemUtils [https://gitlab.com/ugognw/python-comp-chem-utils/]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@gitlab.com:YOURGITLABNAME/ccu.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.wiki/en/latest/installation.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitLab website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox).

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

Authors

	Ugochukwu Nwosu - https://www.law-two.com

Changelog

0.0.1 (2023-06-22)

	First release on PyPI.

 Python Module Index

 a |
 c |
 s

 		 	

 		
 a	

 	[image: -]
 	
 ccu.adsorption	

 	
 	
 ccu.adsorption.adsorbatecomplex	

 	
 	
 ccu.adsorption.adsorbateorientation	

 	
 	
 ccu.adsorption.adsorbates	

 	
 	
 ccu.adsorption.cli	

 	
 	
 ccu.adsorption.sitefinder	

 		 	

 		
 c	

 	
 	
 ccu	

 	[image: -]
 	
 ccu.cli	

 	
 	
 ccu.cli.main	

 		 	

 		
 s	

 	[image: -]
 	
 ccu.structure	

 	
 	
 ccu.structure.axisfinder	

 	
 	
 ccu.structure.cli	

 	
 	
 ccu.structure.comparator	

 	
 	
 ccu.structure.fingerprint	

 	
 	
 ccu.structure.geometry	

 	
 	
 ccu.structure.resizecell	

 	
 	
 ccu.structure.symmetry	

Index

 A
 | C
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_subcommands() (in module ccu.cli.main)

 	adjacent_linkers (ccu.adsorption.sitefinder.MOFSiteFinder property)

 	adsorbate (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory property)

 	adsorbate_orientations() (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory method)

 	AdsorbateComplex (class in ccu.adsorption.adsorbatecomplex)

 	
 	AdsorbateComplexFactory (class in ccu.adsorption.adsorbatecomplex)

 	AdsorbateOrientation (class in ccu.adsorption.adsorbateorientation)

 	AdsorbateOrientationFactory (class in ccu.adsorption.adsorbateorientation)

 	AdsorptionSite (class in ccu.adsorption.sitefinder)

 	as_matrix() (ccu.structure.symmetry.Rotation method)

C

 	
 	calculate_cumulative_displacement() (ccu.structure.comparator.Comparator static method)

 	calculate_separation() (in module ccu.structure.geometry)

 	
 ccu

 	module

 	
 ccu.adsorption

 	module

 	
 ccu.adsorption.adsorbatecomplex

 	module

 	
 ccu.adsorption.adsorbateorientation

 	module

 	
 ccu.adsorption.adsorbates

 	module

 	
 ccu.adsorption.cli

 	module

 	
 ccu.adsorption.sitefinder

 	module

 	
 ccu.cli

 	module

 	
 ccu.cli.main

 	module

 	
 ccu.structure

 	module

 	
 ccu.structure.axisfinder

 	module

 	
 	
 ccu.structure.cli

 	module

 	
 ccu.structure.comparator

 	module

 	
 ccu.structure.fingerprint

 	module

 	
 ccu.structure.geometry

 	module

 	
 ccu.structure.resizecell

 	module

 	
 ccu.structure.symmetry

 	module

 	check_similarity() (ccu.structure.comparator.Comparator static method)

 	check_symmetry() (ccu.structure.symmetry.RotationSymmetry method)

 	(ccu.structure.symmetry.Symmetry method)

 	Comparator (class in ccu.structure.comparator)

 	cosort_fingerprints() (ccu.structure.comparator.Comparator static method)

 	cosort_histograms() (ccu.structure.comparator.Comparator static method)

 	create_alignments() (ccu.adsorption.sitefinder.MOFSite method)

 	create_between_linker_site() (ccu.adsorption.sitefinder.MOFSiteFinder method)

 	create_intermediate_alignments() (ccu.adsorption.sitefinder.MOFSite method)

 	create_linker_sites() (ccu.adsorption.sitefinder.MOFSiteFinder method)

 	create_metal_site() (ccu.adsorption.sitefinder.MOFSiteFinder method)

 	create_orientations() (ccu.adsorption.adsorbateorientation.AdsorbateOrientationFactory method)

F

 	
 	find_farthest_atoms() (in module ccu.structure.axisfinder)

 	find_primary_axis() (in module ccu.structure.axisfinder)

 	find_secondary_axis() (in module ccu.structure.axisfinder)

 	
 	find_tertiary_axis() (in module ccu.structure.axisfinder)

 	Fingerprint (class in ccu.structure.fingerprint)

 	from_structure() (ccu.structure.fingerprint.Fingerprint class method)

G

 	
 	get_adsorbate() (in module ccu.adsorption.adsorbates)

 	
 	get_axes() (in module ccu.structure.axisfinder)

I

 	
 	Inversion (class in ccu.structure.symmetry)

M

 	
 	
 module

 	ccu

 	ccu.adsorption

 	ccu.adsorption.adsorbatecomplex

 	ccu.adsorption.adsorbateorientation

 	ccu.adsorption.adsorbates

 	ccu.adsorption.cli

 	ccu.adsorption.sitefinder

 	ccu.cli

 	ccu.cli.main

 	ccu.structure

 	ccu.structure.axisfinder

 	ccu.structure.cli

 	ccu.structure.comparator

 	ccu.structure.fingerprint

 	ccu.structure.geometry

 	ccu.structure.resizecell

 	ccu.structure.symmetry

 	
 	MOFSite (class in ccu.adsorption.sitefinder)

 	MOFSiteFinder (class in ccu.adsorption.sitefinder)

N

 	
 	next_complex() (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory method)

O

 	
 	operation (ccu.structure.symmetry.RotationSymmetry property)

 	(ccu.structure.symmetry.Symmetry property)

 	
 	orient_adsorbate() (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory method)

P

 	
 	place_adsorbate() (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory method)

R

 	
 	Rotation (class in ccu.structure.symmetry)

 	RotationSymmetry (class in ccu.structure.symmetry)

 	
 	run() (in module ccu.adsorption.adsorbatecomplex)

 	(in module ccu.structure.resizecell)

S

 	
 	sbu_metal (ccu.adsorption.sitefinder.MOFSiteFinder property)

 	SiteAlignment (class in ccu.adsorption.sitefinder)

 	SiteFinder (class in ccu.adsorption.sitefinder)

 	sites() (ccu.adsorption.sitefinder.MOFSiteFinder method)

 	(ccu.adsorption.sitefinder.SiteFinder method)

 	
 	structure (ccu.adsorption.adsorbatecomplex.AdsorbateComplexFactory property)

 	surface_norm (ccu.adsorption.sitefinder.MOFSiteFinder property)

 	Symmetry (class in ccu.structure.symmetry)

 	SymmetryOperation (class in ccu.structure.symmetry)

T

 	
 	transform() (ccu.structure.symmetry.Rotation method)

 	(ccu.structure.symmetry.SymmetryOperation method)

W

 	
 	write() (ccu.adsorption.adsorbatecomplex.AdsorbateComplex method)

 _static/file.png

_static/ccu.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 CompChemUtils

 		
 Requirements

 		
 Installation

 		
 Documentation

 		
 Testing

 		
 Examples

 		
 Enable Shell Completion

 		
 Installation

 		
 Usage

 		
 Reference

 		
 ccu package

 		
 Subpackages

 		
 Module contents

 		
 ccu.adsorption package

 		
 Submodules

 		
 ccu.adsorption.adsorbatecomplex module

 		
 ccu.adsorption.adsorbateorientation module

 		
 ccu.adsorption.adsorbates module

 		
 ccu.adsorption.cli module

 		
 ccu.adsorption.sitefinder module

 		
 Module contents

 		
 ccu.cli package

 		
 Submodules

 		
 ccu.cli.main module

 		
 Module contents

 		
 ccu.structure package

 		
 Submodules

 		
 ccu.structure.axisfinder module

 		
 ccu.structure.cli module

 		
 ccu.structure.comparator module

 		
 ccu.structure.fingerprint module

 		
 ccu.structure.geometry module

 		
 ccu.structure.resizecell module

 		
 ccu.structure.symmetry module

 		
 Module contents

 		
 ccu

 		
 ccu package

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.0.1 (2023-06-22)

